Science

Home / Science

Functional recovery after stroke is promoted by capitalising on the life-long plasticity of the brain and by promoting its stimulation.

RGS integrates a paradigm of action execution with motor imagery and action observation. It combines a personalized motor training in a VR environment, exploiting brain mechanisms for action execution and observation, and a neuro-feedback paradigm using mental imagery as a way to engage secondary or indirect pathways to access undamaged motor function.

The underlying hypothesis behind the efficacy of RGS is that functional recovery can be promoted by capitalizing on the life-long plasticity of the brain [1, 2] and the assumption that neuronal plasticity is governed by only a few computational principles or objectives [3]. The hypothesis behind the choice to combine movement execution with the observation of correlated action of virtual limbs is that  recovery can be accelerated and enhanced by stimulating those brain systems responsible for learning, plasticity and adaptation that underlay body function and behaviour. 

The clinical trials that have been performed thus far suggest that RGS accelerates recovery of acute and chronic stroke and it is more effective then occupational therapy in the recovery of movement speed –[1-16].

 

Clinical validation

The clinical trials that have been performed during the last 10 years have shown that training with RGS boosts recovery in the acute, sub acute and chronic phases of stroke. Most importantly, the patients maintain the improvements achieved while training for a long time. This not only means improvement in speed of movement and range but esepcially improvements in the function of the arms and hands. The clinical trials have shown that RGS combined with standard therapy is more effective in promoting recovery of function when compared to Occupational Therapy alone. RGS is the only system in the world with such an outstanding clinical track record.

The clinical validation studies as well as therapy applications are performed in collaboration with the following health and research organisations:

specs_logo  SPECS Research group
Barcelona, Spain
Hospital Vall d'Hebron  Hospital Universitari Vall d’Hebron
Barcelona, Spain

logo_portada_hospital-esperan
Parc Salut del Mar – Hospital de l’Esperança
Barcelona, Spain
hutj Hospital Joan XXIII de Tarragona, Spain

 

Publications

The scientific results of the clinical trials have bee published in more than 30 papers published in prestigious international journals

Selected Publications

[18] Klaudia Grechuta, Belen Rubio, Armin Duff, Esther Duarte Olle, Friedemann Pulvermüller, Paul Verschure. (2016). Intensive language-action therapy in virtual reality for a rehabilitation gaming system. Journal of Pain Management, 9(3), 243.

[17] Ballester, B. R., Maier, M., Mozo, R. M. S. S., Castañeda, V., Duff, A., & Verschure, P. F. (2016). Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. Journal of NeuroEngineering and Rehabilitation, 13(1), 74.
Chicago

[16] Belén Rubio Ballester, Jens Nirme, Esther Duarte, Ampar Cuxart, Susana Rodriguez, Paul Verschure and Armin Duff (2015), “The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients”, Journal of NeuroEngineering and Rehabilitation, 12:50 ; doi 10.1186/s12984-015-0039-z.

[15] Grechuta, K, Rubio, B, Duff, A, Duarte Oller, E, and Verschure, P (2014), “Intensive language-action therapy in virtual reality for a rehabilitation gaming system“, Proc. 10th Intl Conf. on Disability, Virtual Reality and Assoc. Technologies, PM Sharkey, L Pareto, J Broeren, M Rydmark (Eds), pp. 265-273, Gothenburg, Sweden, 2-4 Sept. 2014

[14] Rubio, B., Nirme, J., Duarte, E., Cuxart, A., Rodriguez, S., Duff, A., & Verschure, P. F. M. J. (2013). Virtual Reality Based Tool for Motor Function Assessment in Stroke Survivors. In J. L. Pons, D. Torricelli & M. Pajaro (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation (Vol. 1, pp. 1037-1041): Springer Berlin Heidelberg.

[13] Maier, M., Rubio Ballester, B., Duarte, E., Duff, A. and Verschure, Paul F.M.J. (2012). “Social Integration of Stroke Patients through the Multiplayer Rehabilitation Gaming System“. Games for Training, Education, Health and Sports. Lecture Notes in Computer Science Volume 8395, 2014, pp 100-114.

[12] Rodriguez, S., Bermudez i Badia, S., Cameirão, M. S., Fina, A. C., Duarte, E., Duff, A., Verschure, P. F. M. J., et al. (2011). “Effects of Virtual Reality Upper Limb Based Training (Rehabilitation Gaming System) on Spasticity, Shoulder Pain, and Depression After Stroke”. 2011 AAPM&R annual assembly (Vol. 3, p. S160). Elsevier Inc. doi:10.1016/j.pmrj.2011.08.013.

[11] Nirme, J., A. Duff, and P.F.M.J. Verschure. “Adaptive rehabilitation gaming system: On-line individualization of stroke rehabilitation”. in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. 2011. IEEE.

[10] Verschure, P. F. M. J. (2011). “Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory”. Conference proceedings for the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. (Vol. 2011, pp. 2254–7). IEEE.

[9] Nirme, J., Duff A., & Verschure P.F.M.J. (2012) “Adaptive Enhanced Mapping Of Upper Limb Movement In A Virtual Reality System For Stroke Rehabilitation”. Conference Abstract presented at the 8th FENS Forum of Neuroscience, Barcelona, Spain.
[8] Rubio, B., Nirme, J., Duarte, E., Cuxart, A., Rodriguez, S., Duff, A., & Verschure, P. F. M. J. (2013). “Virtual Reality Based Tool for Motor Function Assessment in Stroke Survivors”. In J. L. Pons, D. Torricelli & M. Pajaro (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation (Vol. 1, pp. 1037-1041): Springer Berlin Heidelberg.

[7] Nirme, J., Rubio, B., Duff, A., Duarte, E., Rodriguez, S., Cuxart, A., & Verschure, P. F. M. J. (2013). “At Home Motor Rehabilitation in the Chronic Phase of Stroke Using the Rehabilitation Gaming System”. In J. L. Pons, D. Torricelli, & M. Pajaro (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation SE – 151 (Vol. 1, pp. 931–935). Berlin: Springer Berlin Heidelberg.

[6] Duff, J. Nirme, B.Rubio, E. Duarte, A. Cuxart, S. Rodríguez, P.F.M.J. Verschure “The optimal dosage of the Rehabilitation Gaming System: The impact of a longer period of virtual reality based and standard occupational training on upper limb recovery in the acute phase of stroke”. Abstract presented during the 22nd European Stroke Conference 2013, LONDON, UK.

[5] Ballester, B. R., Nirme, J., Duarte, E., Cuxart, A., Rodriguez, S., Verschure, P., & Duff, A. (2015). The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patientsJournal of neuroengineering and rehabilitation12(1), 50.

[4] Prochnow, D., Bermudez I Badia, S., Schmidt, J., Duff, A., Brunheim, S., Kleiser, R., Seitz, R., et al. “A functional magnetic resonance imaging study of visuomotor processing in a virtual reality-based paradigm: Rehabilitation Gaming System“. The European journal of neuroscience, (January), 1–7, 2013.

[1]    Mónica S. Cameirão, Sergi Bermúdez i Badia, Esther Duarte, Antonio Frisoli, and Paul F.M.J. Verschure. The combined impact of Virtual Reality Neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. “Stroke”, vol. 43 (10) 2720-2728, 2012